
CodeSage:
A Generative Approach to Improving Code Quality

Shounak Ray, Michael Nath, Joseph Tey
Department of Computer Science

Stanford University
[shounak, mnath, joetey]@stanford.edu

Abstract

We propose a novel system, CodeSage: a generalizable method to generate higher-
quality code snippets. While most studies focus on specialized models for code
quality improvement tasks, such as fixing bugs, the uniqueness of CodeSage lies in
using a Github reputation score to evaluate the quality of our functions. We break
our task into three main contributions: 1) aggregate clusters of code functions where
each cluster represents one specific intent category; 2) within each cluster, score the
quality of each function using a unique Github reputation score and designate the
top ones as high quality code snippets of that intent category; 3) aggregate a dataset
mapping low-quality functions to corresponding high-quality; and 4) fine-tune a
pre-trained Seq2Seq transformer model that generates a high-quality code function
given low-quality code. Our main contributions include offering a generalizable
and dynamic way to identify “intent" behind code snippets, publishing a dataset
for the public annotated with reputation scores, and confirming robustness of our
final Seq-2-Seq model through comparative analysis with silhouette scores.

1 Introduction

Often times, there is a more preferable and efficient implementation of the code a developer has
written for their project. It is only through code reviews and extensive research that one is able to
enhance their code quality, both from a functionality and style standpoint. It is especially a less fluid
and time-consuming process for fledgling coders to gain inspiration from relevant and exemplary
repositories online. Thus, the overarching problem we wish to address is the following: how can
we provide developers with “better" alternative code snippets, and explain why such alternatives are
better?

Most studies in the past focus on providing developers with ’similar’ alternative code snippets (as
opposed to higher quality), and if they do focus on producing ’better’ code snippets, such models
often focus on a specific, specialized definition of ’better’, such as the specific task of repairing
broken code. This paper is an exploratory study that proposes CodeSage: a novel, generative method
of transforming ’bad code’ to ’good code’, that is both scalable and generalizable.

Rather than constraining the solution to specific types of ’bad code’ and ’good code’, CodeSage
relies on a unique Github reputation score (derived from a combination of stars, forks and watchers)
to infer code quality - a generalizable, data-driven approach to improving the quality of one’s code.

This method enables the possibilities of many useful downstream tasks, although explorations of such
tasks are beyond the scope of this paper. These tasks include using the produced ’good code’ to find
similar alternative snippets in large-scale databases like Github, or produce reasoning explaining how
specifically a developer should improve their code.

2 Related Work

There exists a range of code retrieval systems that aim to find similar code snippets from a large-scale
database. CodeHow Lv et al. (2015) uses NLP queries and code search techniques to find relevant
snippets, and DeepCode Gu et al. (2018) leverages uniquely constructed code embeddings to also

Figure 1: This figures depicts the pipeline used to generate “good" code from “bad" code. Starting at the left-most
component, we ingest the GitHub Code Dataset, augment each constituent function with reputation features,
and constrain ourselves to functions under a certain maximum length. In stage 2, we further augment function
with a documentation string outputted by an LLM. In stage 3, a clustering algorithm intakes documentation for
all code snippets and groups them into various “intent" clusters. For each identified cluster, Stage 4 assigns
a reputation score to every constituent function per the calculated metrics in Stage 1. This is then used to
strategically split each cluster into “good" and “bad" code snippets to construct a dataset, which is used to
finetune a pre-trained code-to-code transformer in Stage 5.

recommend similar code snippets. However, when a developer is looking to improve the quality of
his code base, it is likely that they are seeking ’higher-quality’ versions of their code, as opposed to
’similar’ code functions.

With regard to the systems that seek to improve the quality of code, such research is often focused
on specialized tasks, including code correction tasks. Neural Progam Repair studies, such as the
works of Tufano et al. (2019) and Huang et al. (2021), describe novel Seq2Seq models that suggest
more reliable code snippets to replace faulty ones. Other specialized code quality improvement
systems include Graph2Diff Tarlow et al. (2020), using graph-based representations of historical code
changes to provide recommendations that specifically fix build errors. While there is a rich body of
models that specialize in a range of code quality improvement tasks, such models are not designed to
generalize beyond their area of focus.

The challenge of building a generalizable code quality improvement model is finding an appropriate
dataset and code quality measurement that is also generalizable. Microsoft’s CodeReviewer Li et al.
(2022) is a model trained on real-world code reviews, and is able to generalize given the nature of such
a dataset. CodeSage proposes an alternative to creating a generalizable code quality improvement
model by using GitHub reputation scores in order to determine ’code quality’, inferring characteristics
of ’good code’ and ’bad code’ through such ’social’ features.

3 Approach

We deconstruct this section into three main discussions: one outlining how we construct our data set,
one outlining our baseline architectures and another outlining – in greater specificity – our custom
data architecture. Both discussions include high-level justifications behind the design decisions for
the respective architectures presented. See Figure 1 for an overview of our general approach.

3.1 Data Augmentation

For our base dataset D, we first leverage the GitHub Code1 dataset available on HuggingFace, where
each source code is broken down into its constituent functions - we ended up with 8,681 unique Python
functions. Formally, D = {x(j)}ND

j=1 of ND functions from GitHub repositories, where x(j) consists
of the source code cj of the jth function. We update x(j) = x(j) ∪ {f (j), s(j), w(j), p(j), d(j)} where
– for the jth function – f (j), s(j), w(j), p(j) denotes the number of forks, stars, watchers, and issues
of the repository and d(j) denotes a natural language description. For each code function x(j) ∈ D,
we compute its ’reputation score’ as rj = R(fj , sj , wj , pj), where R : R4 → R denotes a scoring
function. We chose a quadratic function that is as follows: R(fj , sj , wj , pj) = s2j + f1.5

j + wj + pj .
This function attaches more weight to the number of forks and stars a repository has, with the
motivation that variations in these features are more prevalent and meaningful than in the number of
watchers and open issues.

1https://huggingface.co/datasets/codeparrot/github-code

2

https://huggingface.co/datasets/codeparrot/github-code

3.2 Baseline Architecture – Two Avenues

Figure 2: This figure shows the three different methods to segregate good and bad code considered to solve the
greater objective of generating good code from bad code. The smallest circles represent a code snippet including
its associated documentation. The arrows connecting the red-area circles to green-area circles represents the
pairwise construction of our dataset for our final code-to-code model – as mentioned earlier. The left and middle
arrangements represent the two baseline avenues discussed below, where the former involves randomly assigning
half the functions to be bad code. The latter involves ranking based on a reputation score from least to greatest
and assigning the first half to be bad code. The right-most figure is an outline of the CodeSage architecture,
where code snippets are first clustered as per their documentation, subsequently assigned a reputation score, and
then split in half

There are two baseline architectures which we will compare our novel CodeSage implementation
to. The naïvest of these two begins by retrieving the our dataset D, randomly shuffling the functions
into an arbitrary ordering, and finally assigning the first half of these functions as “bad" code and
the second half as “good code." The – anticipated – slightly more robust implementation begins by
assigning a reputation score to each function according to a function outlined in 4.6, ordering the
functions according to this score, and then following the identical process of assigning the first half
as bad code and the second half as good code. We hope these distinct baselines aid in elucidating the
impact of supplementing a reputation score for each snippet.

Given these three implementations (two baselines and our custom approach), we are able to investigate
three questions to assess different components of our custom approach. First, when comparing the
baseline arbitrary to the baseline reputation-sorted approach, we will be able to discover whether
fixing a reputation threshold to differentiate between code and bad code will help at all. Secondly,
when observing the performance of our custom approach against the baseline reputation-sorted
approach, we can identify clustering code by intent was beneficial to the final bad-to-good code
generation. Finally, comparing performances of the naïvest and custom approaches, we will be
able to discover how much more helpful clustering and reputation-sorting was towards reaching our
objective.

3.3 CodeSage Architecture – Custom Implementation

3.3.1 Stage 1 – Documentation generation (Code-to-Documentation)

The first step is to extract the intention (the ‘purpose’ of a code block) of each function in our base data
set, so that we can generate unique clusters corresponding to different intentions. We experimented
with various ways of generating natural language text descriptions d(j) of each code function f (j).
We tested two main approaches to extract function intent.

Firstly, we tested a CodeTrans model Elnaggar et al. (2021) specifically for generating function
documentation for Python code, fine-tuned on the CodeSearchNet2 dataset. While there were small,
base, and large variants of this model, we opted to use the CodeTrans t5-base model as it
achieved the highest BLEU score for Python function documentation generation (20.39).

Secondly, we also tested a Davinci GPT-3 model to generate function documentation for Python
code. We decided to use an LLM to generate documentation as we hoped that it would produce more
detailed, granular descriptions of our functions. The configuration of the model was temperature=0,
max_tokens=50, top_p=1.0, frequency_penalty=0.0, presence_penalty=0.0. We have

2https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/

3

https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/

been interested in investigating whether the granularity of our function documentation would impact
the construction of our clusters that is done in the following stage.

3.3.2 Stage 2 – Intent Clustering (Document-to-Intent)

When provided with an arbitrary function provided by a programmer during inference, we want
our code-to-code model to implicitly understand the intent of this input so as to accurately return
similar-intent suggestions. To do so, the training set of the model must be constructed with respect
to the intents of each function in D. Let I denote the set of intent categories, which we have not
discovered yet. Each function x(j) ∈ D has a corresponding intent category xi ∈ I. We begin
by vectorizing each function string cj ∈ D through the SentenceTransformer model. We have
developed two mechanisms to discover |I|.
A brute-force approach is to test different k hyper-parameters fed into the KMeans clustering algorithm.
This works by randomly selecting K initial cluster centroids and assigning each data point to the
closest centroid based on a distance metric such as Euclidean distance. The mean of each cluster is
then calculated and used to update the centroid location. This process is repeated iteratively until the
centroids no longer move significantly, or a maximum number of iterations is reached.

The second clustering algorithm is Density-Based Spatial Clustering of Applications with Noise
DBSCAN, an unsupervised method that ingests the vectorized function strings and outputs a fixed
number of clusters (Ester et al. (1996)). The algorithm is hyper-parameterized by ϵ, which is the
distance threshold for grouping points together. Points that are not within ϵ distance of any other
point are considered noise.

3.3.3 Stage 3 – Function Scoring and Thresholding

Once we have clustered the functions based on similar intent, we proceed to scoring each one via the
“reputation" of the GitHub repository it comes from. We perform this scoring to construct a heuristic
that determines what is “bad" code, and what is “good" code. Our intuition is that while the number
of stars, forks, open issues, etc of a parent repository suggest little about how poorly written a piece
of code is, it can suggest something about how well it is written.

For each intent category i ∈ I, after associating each function x(j) with a ’reputation score’ rj we
then sort the constituent ni functions in descending order according to the score. Given this sort, we
now construct a set Ei of exemplar functions to which the set Bi of “bad" functions will be mapped
to. At this point, we can implement a variety of thresholding functions that constructs this partition
of our ni functions into exemplars belonging to Ei, and non-exemplars belonging to Bi.

We denote a thresholding function as T (r1, r2, . . . , rni) that takes in the scores of the ni functions
in intent category i and outputs the 2-tuple (Ei, Bi). Note that it need not be the case that |Ei| =
|Ej |, |Bi| = |Bj | for intent categories i, j where i ̸= j. Therefore, a meaningful thresholding
function should be contextual with regards to the intent cluster it is operating on. To that end, we have
explored two thresholding functions Ts and Tp. Ts represents the “boundary" thresholding function,
which sends all functions having score at least t ∈ R to Ei, and otherwise to Bi. Tp represents the
“percentile" thresholding function, which sends all functions whose scores are at a percentile greater
than ph ∈ (0, 100) to Ei, and which sends all functions whose scores are at a percentile less than
pl := 100− ph to Bi.

3.3.4 Stage 4 – Bad to Good Code (Code-to-Code Model)

Let NG denote the desired number of mappings we wish to finetune our code-to-code model on. We
begin by constructing a new dataset G having NG mappings by performing the following: within
each intent category i ∈ I, we generate new training instances by connecting each “bad" function in
Bi to each exemplar function in Ei. Due to computational limitations, out of all the mappings, we
randomly sample a maximum of 100,000 functions to yield G.

Next, we proceed to fine-tune the Salesforce CodeT53 transformer on G, training the model to map
the input “bad" functions to the corresponding exemplar in G. This transformer has been pretrained
to handle a myriad of code generation tasks, some of which are exemplified in its open-sourced
implementation available on Hugging Face (Wang et al. (2021)). Our motivation is that by observing

3https://huggingface.co/Salesforce/codet5-base

4

https://huggingface.co/Salesforce/codet5-base

many translations of “bad" code into “good" code, the transformer may learn rich syntactic and
semantic features of good code that can be used to improve an arbitrary piece of code.

Finetuning has involved experimenting with the learning rate α, the weight decay γ, and the number
of finetuning epochs e. As a preprocessing step that conforms to the protocol of finetuning a T5
transformer, every ‘bad" code in G has been prefixed with the string “refine: ". This modified input,
along with its good code label, are tokenized via the RobertaTokenizerFast4 tokenizer available
on Hugging Face. We finally replace each entry in G with the appropriate tokenized input and label.

4 Experiments

4.1 Investigating the Relationship between Document Generation and Cluster Performance

Given the interdependent nature of the CodeSage pipeline, it is possible that the hyper-parameter
settings for one stage in the pipeline – say Stage 1 – could impact the performance of downstream
stages – say Stage 2. In this section, we perform a silhouette analysis where we observe the impact
of various Stage 2 code-to-documentation LLMs and Stage 3 clustering hyper-parameters on the
effectiveness of the clustering algorithms. This analysis not only offers a point of comparison to
the experimental results of CodeSage as presented in section 4.4 when evaluating the robustness of
CodeSage, but also attempts to demystify the impact of clustering on downstream performance.

We vary the Stage 1 LLM used to generate documentation – such as GPT or CodeTrans – as well
as the clustering hyper-parameters – including method (KMeans or DBSCAN), k-value (for KMeans),
ϵ (for DBSCAN). To test the effectiveness of these aforementioned hyper-parameter combinations
spanning stages 1 and 2, we compute the silhouette score S of the implemented clustering algorithm
(Rousseeuw (1987). S is a useful metric to evaluate the quality of a clustering solution, as it measures
the similarity of data points within a cluster and the dissimilarity of data points between clusters. A
score of 1 means well-clustered data, -1 means misclassified, and a score close to 0 implies ambiguity
between clusters. Note: “detailed description" refers to GPT in the figures below.

Figure 3: This figure shows how the silhouette
scores varies across various k-values when the
KMeans algorithm is used. We see that the util-
ities of both code-to-documentation algorithms is
roughly the same until about k = 250.

Figure 4: This figure shows how the silhouette
scores varies across various ϵ-values when the
DBSCAN algorithm is used. We see that the util-
ity of the CodeTrans model is higher than that of
GPT until about ϵ = 0.6 when the order flips.

When the KMeans clustering algorithm is implemented, notice the divergence in S after k = 250 in
Figure 3. This suggests that the GPT code-to-documentation model seems to be more performant and
discriminatory than CodeTrans – however, only after k = 250. Since we’ve observed that k ≥ 250
results in best performance – under the KMeans approach – we first hypothesize that the downstream
code-to-code performance metrics will be superior in hyper-parameter combinations where k ≥ 250
and GPT is used as opposed to combinations where k ≥ 250 and CodeTrans being used. To test this
hypothesis, we engineer downstream hyper-parameter combinations that incorporate k-values lower
and higher than 250 across both the GPT and CodeTrans models.

4https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/roberta#
transformers.RobertaTokenizerFast

5

https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/roberta#transformers.RobertaTokenizerFast
https://huggingface.co/docs/transformers/v4.27.1/en/model_doc/roberta#transformers.RobertaTokenizerFast

Considering Figure 4, we notice that ϵ ≈ 0.6 seems to be a turning point for which code-to-
documentation approach yields the highest silhouette score. CodeTrans seems to have a higher
silhouette score when ϵ < 0.6 while GPT seems to have a higher silhouette score when ϵ ≥ 0.6.
Therefore, we secondly hypothesize to observe higher code-to-code performance for GPT in hyper-
parmeter combinations where where ϵ ≥ 0.6 and vice versa when ϵ < 0.6. Notably, DBSCAN seems
to – on average – have universally lower silhouette scores across all ϵ values compared to the KMeans
approach for all k-values. This allows us to finally hypothesize that KMeans is generally a more
superior algorithm to DBSCAN. We stress, though, that this is simply a hypothesis and there many
other confounding hyper-parameter and data-modeling interactions that disagree with this notion.

4.2 Data

To reiterate, our primary dataset is the GitHub Code dataset found on Hugging Face. This dataset
contains over 100 million code files spanning 32 programming languages - we filter specifically for
Python functions. Unlike other datasets, this specific dataset is associated with a parent Github
repository, allowing us to generate “reputation scores“ that correspond to code quality.

4.3 Evaluation Method – Core Pipeline

Our evaluation method for the core pipeline involves computing a CodeBLEU and CHRF score of
the predictions generated by our code-to-code model. While we considered computing the BLEU
score, it is not tailored to the domain of code generation. The CodeBLEU and CHRF score have been
reported to be a possible better alternative, considering the syntactic and semantic structure of code
(Evtikhiev et al. (2022)). Before finetuning our pretrained code-to-code model, we create a validation
dataset of proportion v of the total bad-code-to-good-code mappings in G. After the finetuning
epoch, we compute the three scores with respect to the input bad code in our validation split, the
corresponding labeled good code, and the predicted good code output from our code-to-code model.
Finally, we evaluate our code-to-code models on a test dataset of bad-code-to-code mappings that we
have constructed from held-out entries of D.

4.4 Experimental Details

Since the components of our system are interdependent, it is necessary to evaluate our system
across various hyper-parameter configurations across each component. After taking into account
the silhouette score analysis conducted in 4.1, the memory limitations of our GPU, and the total
virtual machine runtime available with our AWS credits, we have only investigated a subset of
our hyper-parameters. Specifically, we performed a grid search over all hyper-parameters in our
system, the realizations of which are described in Table 3, located in Appendix A. After finetuning
is completed for each model, we deploy it on its respective test dataset (as described in 4.4) and
compute the average CodeBLEU and CHRF score. For finetuning, we have specifically finetuned the
Salesforce/codet5-small Hugging Face model on an AWS g5.2xlarge EC2 instance. The test
scores (500 mappings withheld) are enumerated in Table 3 in Appendix A.

5 Results and Analysis

(a) Baseline versus CodeSage

Configuration CodeBLEU CHRF

Arbitrary Shuffle 25.255 5.458
Sorted by Reputation 25.226 5.514

CodeSage 25.256 5.931

(b) Test Scores Across Select Configurations

Code-To-Doc ϵ or k T CodeBLEU CHRF

CodeTrans 0.5 Tp 25.257 5.666
CodeTrans 0.85 Tp 2.439 4.417

GPT 0.5 Tp 2.399 4.414
GPT 0.85 Tp 25.256 5.896

CodeTrans 0.5 Ts 8.091 2.785
CodeTrans 400 Ts 5.133 4.931

GPT 60 Ts 0.331 5.277
GPT 400 Ts 5.058 5.701

Table 1: Results. Blue cells correspond to DBSCAN (where ϵ is a hyper-parameter), and green cells correspond
to KMeans (where k is a hyper-parameter). For all of these configurations, the learning rate α = 0.001, the
percentile for Tp = 90, and the boundary for Ts = 50.

6

5.1 Baseline Versus CodeSage Results

Considering Table 1 (a), we notice that CodeSage outputs code yielding both a greater CodeBLEU
and CHRF score of code generated from our two baselines. We can now address the questions
we have raised in 3.2. First, it appears that mappings that consider the reputation scores of the
involved functions induce a greater CHRF but lower CodeBLEU score than those induced by arbitrary
mappings. Next, since CodeSage yields both a greater CodeBLEU and CHRF score than the Sorted
by Reputation baseline, it suggests that intra-intent-cluster mappings induce code generations of
higher quality. Lastly, comparing CodeSage against the Arbitrary Shuffle baseline, it suggests
that the combination of intra-intnet-cluster mappings and reputation scoring yield the most performant
generations with respect to the CodeBLEU and CHRF score. With that being said, the CodeSage
architecture yields only marginally greater scores than the baselines. This suggests suggest that we
may have to investigate with greater values of NG and ND to yield larger datasets that could yield
more conclusive scores.

5.2 Grid Search Results and Analysis

Considering Table 1(b), this is where our grid search results are shown. We have selected configura-
tions that either yield the greatest scores, the lowest scores, or are simply worthwhile to examine. We
notice immediately that with the experiments we were able to run, the CodeTrans model equipped
with percentile-based thresholding and using DBSCAN clustering algorithm, where ϵ = 0.5, achieves
the best CodeBLEU of 25.257. On the other hand, the GPT model equipped with percentile-based
thresholding and using DBSCAN clustering algorithm, where ϵ = 0.85, achieves the best CHRF scores
of 5.896, but has a lesser CodeBLEU score than at the analogous CodeBLEU setting. It is important to
note that certain configurations yield relatively high CodeBLEU scores, but with low variance between
them. We hypothesize that perhaps the code-to-code model overfits to a subset of the total mappings.
Increasing NG could alleviate this overfitting by yielding more variety in the training dataset, which
downstream yields more variety in CodeBLEU scores among these configurations.

5.3 Hyper-parameter Analysis

Here, we will analyze notable results of the main hyper-parameters we tested, as shown in Table 1 (b),
and connect them with resultant hypotheses from the preliminary silhouette score experiments.

5.3.1 Code-To-Doc Model

Comparing rows 1 and 3 of Table 1 (b), we observe that CodeTrans is better than GPT using the
DBSCAN clustering algorithm, where ϵ = 0.5, for both CHRF and CodeBLEU. Comparing rows 6 and 8
of Table 1 (b), we also observe that GPT is better than DBSCAN using the KMeans clustering algorithm,
where k = 400 – at least when considering CHRF.

In section 4.1, recall that our first hypothesis was that the code-to-code model would perform better on
GPT than CodeTrans when k ≥ 250. The results from our CodeSage hyper-parameter exploration
presented in Table 1b corroborates this first hypothesis5. Specifically, this is the case when
comparing row 8, which represents a KMeans configuration using GPT with k = 400 ≥ 250 as
opposed to row 6, which represents an identical configuration except with the CodeTrans model.

In section 4.1, recall that our second hypothesis was that GPT would be more performant than
CodeTrans when ϵ ≥ 0.6, and vice versa when ϵ < 0.6. The results from our CodeSage hyper-
parameter exploration presented in Table 1b corroborates this second hypothesis – in terms of both
CodeBLEU and CHRF.

The fact that both our first and second silhouette hypotheses were corroborated by the results from
our hyper-parameter search suggests that CodeSage is robust – to an extent. Recall that the silhouette
analysis was run on the entire, unfiltered function dataset D of 10,000 starting functions. Despite
us only feeding the code-to-code transformer an upper-limit of 100,000 functions, the model was
nevertheless able to confirm the expected relationships between the code-to-documentation LLMs,
clustering methods, and clustering hyper-parameters. This offers an avenue to demystify the evidently
positive impact of clustering on downstream code-to-code performance.

5Note that the CHRF scores a relatively wide apart. The CodeBLEU score only has a difference of one-tenth
of a percentage point, which is arguably not enough to counter the evidence that GPT seems to be a superior
code-to-documentation model than CodeTrans, at least for this KMeans hyper-parameter combination.

7

It is interesting to note that CodeTrans is exclusively superior to GPT under the DBSCAN clustering
approach, whereas GPT is exclusively superior to CodeTrans under the KMeans clustering approach.
One possible reason why is related to how the KMeans and DBSCAN algorithms function. KMeans is
appropriate for well-defined clusters and roughly equal in size. That is, often when data has clear
geometric structures and clusters are well-separated, KMeans may be a better choice than DBSCAN.
The fairly k = 400 – for the configuration where GPT is better than CodeTrans – may imply clusters
that are roughly equal in size given the forceful fragmentation into 400 distinct intent grouping,
whereas DBSCAN – upon further analysis – outputs a mere 15 clusters. Therefore, higher-resolution
intent grouping results in the construction of a superior dataset G.

5.3.2 Clustering Algorithm

Comparing the overall blue and green configurations of Table 1 (b), we also observe that DBSCAN
performs on average, better than the KMeans clustering algorithm. These results, however, are not
consistent with the last hypothesis of our preliminary clustering experiment, which predicted that
KMeans should perform better DBSCAN. We suspect that this might be because of a few possible
reasons. One possible reason is that DBSCAN is better suited than KMeans to handle noise and outliers
in the original data, and this benefit is not accurately represented in the calculation of silhouette
scores which calculates average distances between points. After all, it is plausible that there may have
been a substantive number of “atypical" functions in D which lent DBSCAN to be a better algorithm.
Secondly, there may be numerous other hyper-parameters in Table 1b at play – varying learning rates
α and splitting methods T , for example, likely impact the perceived utility of DBSCAN. The impact of
such downstream hyper-parameters were not captured by the upstream silhouette analysis – leading
to such inconsistencies.

5.3.3 Thresholding Function

Comparing rows 1 and 5 of Table 1 (b), this suggest that percentile-based thresholding functions
(Tp) could be significantly better than boundary-based methods (Ts) when it comes to the quality
of code generation. This could be because the boundary-based method, Ts, disregards the extent
to which a score is below or above the selected boundary (in this case, 50). All functions that are
sent to the same set, whether Ei or Bi, are treated as “equally bad" (or “equally good") which may
not be appropriate. On the contrary, we can think of pl and ph parameters of Tp as controlling how
discriminatory the thresholding should be in designating exemplars. For instance, if ph approaches
100, then we are effectively filtering out possible exemplars to only the one with the maximal score.
This may allow for more apparent bad-code-to-good-code mappings to be present in G, which make
it easier for the model to generate code like the exemplars.

6 Conclusion

CodeSage provides a novel consideration of code function documentation and GitHub features as a
generalizable method for generating higher-quality code snippets. Firstly, we found that CodeSage
performed better than both baselines, though this improvement was marginal. Further testing would
be required to confirm statistical significance. Secondly, we found the GPT descriptions were better
than CodeTrans descriptions when k > 250, and CodeTrans descriptions were better than GPT
when ϵ < 0.5. Thirdly, the main experimental results were consistent with silhouette analysis,
suggesting that the accuracy of the clusters correlate with more accurate productions of higher-quality
code. Finally, percentile-based methods of thresholding were better than shared methods, likely due
to the former being more discriminatory. One of our key contributions include providing both detailed
and general descriptions of over tens of thousands of arbitrary functions found on GitHub. We hope
that this annotated dataset could be used in future work in the space of automatically improving code
quality. Due to compute and memory constraints, we have been limited to finetuning a miniature
version of the Salesforce CodeT5 transformer. We hope that leveraging larger versions, such as
Salesforce/codet5-large may improve our code generation scores. We were also required to
sample a maximum of 100,000 functions out of all the mappings from bad code to good code due
to computational limitations. In the future, we predict that more data should lead more accurate
results. Another major limitation was the large variety of different types of Python functions that may
have limited the ability for meaningful clusters to be formed. Some functions were init functions
for classes, while others were sorting and searching functions. Constructing a dataset that is more
specialized for a specific function type may lead to more meaningful clusters, and therefore, more
accurate results.

8

References

Ahmed Elnaggar, Wei Ding, Llion Jones, Tom Gibbs, Tamas Feher, Christoph Angerer, Silvia
Severini, Florian Matthes, and Burkhard Rost. 2021. Codetrans: Towards cracking the language
of silicon’s code through self-supervised deep learning and high performance computing. arXiv
preprint arXiv:2104.02443.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm
for discovering clusters in large spatial databases with noise. In Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining, KDD’96, page 226–231.
AAAI Press.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov, and Timofey Bryksin. 2022. Out of the bleu:
how should we assess quality of the code generation models?

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep code search. In Proceedings of the
40th International Conference on Software Engineering, pages 933–944.

Shan Huang, Xiao Zhou, and Sang Chin. 2021. Application of seq2seq models on code correction.
Frontiers in artificial intelligence, 4:590215.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, et al. 2022. Automating code review activities by
large-scale pre-training. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 1035–1047.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei Zhang, and Jianjun Zhao. 2015.
Codehow: Effective code search based on api understanding and extended boolean model (e). In
2015 30th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
260–270. IEEE.

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol, Charles
Sutton, and Edward Aftandilian. 2020. Learning to fix build errors with graph2diff neural net-
works. In Proceedings of the IEEE/ACM 42nd international conference on software engineering
workshops, pages 19–20.

Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys Poshyvanyk.
2019. On learning meaningful code changes via neural machine translation. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 25–36. IEEE.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation.

9

https://doi.org/10.48550/ARXIV.2208.03133
https://doi.org/10.48550/ARXIV.2208.03133
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/https://doi.org/10.1016/0377-0427(87)90125-7
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859

A Appendix

Table 2: Grid search hyper-parameter realizations

hyper-parameter Possible Values

ND {10,000}
NG {100,000}

Code-to-Doc LLM Model {GPT, CodeTrans}
Clustering Algorithm {DBSCAN, KMeans }
Clustering Embedder {SentenceTransformer }

ϵ {0.5}
k {30, 50, 60, 120, 180, 250, 400}
R {Rq}
T {Ts, Tp}
t {50}
pt {60, 90}
α {0.0001, 0.0003}
γ {0.01}
e {1}
v {0.02}

Table 3: Test Scores Across Select Configurations

Code-to-Doc LLM Model Clustering Algo. ϵ k T pt α CodeBLEU CHRF

CodeTrans DBSCAN 0.5 - Tp 90 0.0001 25.570 7.165
CodeTrans DBSCAN 0.85 - Tp 90 0.0001 2.439 4.817

GPT DBSCAN 0.5 - Tp 90 0.0001 2.399 4.714
GPT DBSCAN 0.85 - Tp 90 0.0001 25.140 4.461

CodeTrans DBSCAN 0.5 - Ts - 0.0001 25.370 6.051
CodeTrans KMeans - 400 Ts - 0.0001 5.133 4.931

GPT KMeans - 60 Ts - 0.0003 25.224 5.587
GPT KMeans - 400 Ts - 0.0001 5.058 5.701

10

	Introduction
	Related Work
	Approach
	Data Augmentation
	Baseline Architecture – Two Avenues
	CodeSage Architecture – Custom Implementation
	Stage 1 – Documentation generation (Code-to-Documentation)
	Stage 2 – Intent Clustering (Document-to-Intent)
	Stage 3 – Function Scoring and Thresholding
	Stage 4 – Bad to Good Code (Code-to-Code Model)

	Experiments
	Investigating the Relationship between Document Generation and Cluster Performance
	Data
	Evaluation Method – Core Pipeline
	Experimental Details

	Results and Analysis
	Baseline Versus CodeSage Results
	Grid Search Results and Analysis
	Hyper-parameter Analysis
	Code-To-Doc Model
	Clustering Algorithm
	Thresholding Function

	Conclusion
	Appendix

