Learned Dynamics Models for Robotic Fluid Manipulation

Michael Nath
Stanford University
Department of Computer Science

mnath@stanford.edu

Abstract

Many of the objects we interact with in the world are
fluids — water, milk, air, etc. The world of robot learn-
ing has seen significant advances in fine-grained control of
discrete solids, but it remains a challenge to endow robots
with an intuitive understanding of fluid manipulation. As a
novel attempt to impart robots with a learned physics model
of a complex, multi-fluid system, this study aims to learn
a dynamics model that takes in input RGB observations of
the task scene and prescribes an action that progresses the
robotic agent through the dynamics of the fluid environment,
and to hopefully solve the manipulation task.

For this project, The cornerstone of our work is a
goal-conditioned behavior cloning (GCBC) model, a goal-
conditioned architecture that leverages both convolutional
and multi-layer perceptron (MLP) layers. This model is de-
signed to predict actions based on demonstrations gener-
ated by an exploration policy, enabling goal-oriented learn-
ing and adaptive behavior. A critical component in this
setup is the agent’s "myopia”, or the forecast horizon for
goal observation, which we can control using a hyperpa-
rameter. Through this element, we examine the implications
of varying the temporal setting of the goal observation dur-
ing training, allowing for a detailed analysis of behavior
cloning in different temporal contexts. Our results show that
agents conditioned on next-step goals are able to achieve a
higher likelihood of cloning success, offering interesting in-
sights into how the prediction horizon impacts learning and
performance.

Accompanying the GCBC model is the creation of the
first trajectory dataset for the LatteArt-vO0 task. The
data is generated through a dedicated simulator provided
by FluidLab, a test-bed for fluid manipulation tasks fea-
turing multi-fluid systems with a simulation engine that ac-
curately mirrors real-world fluid dynamics. Using a com-
bination of random and correlated noise policies, we in-
vestigate datasets that encompasses a broad spectrum of
fluid particle arrangements. This extensive, diverse dataset
acts as the bedrock of our models, providing a compre-

hensive foundation for training and evaluating our goal-
conditioned agents. It also offers an open-ended resource
for future studies in fluid manipulation and other physically
complex tasks.

To further augment the capabilities of our model, we
investigate the incorporation of Variational Autoencoders
(VAEs) within the GCBC framework, yielding a new model
variant - the GCBC—-VAE. This agent learns to construct a
more condensed and manageable representation of the fluid
particles’ arrangements, thereby enhancing the agent’s
ability to localize the goal trajectories. The GCBC-VAE
agent shows a marked improvement in terms of trajectory
localization compared to the base GCBC model, revealing
the potential of integrating latent representations into goal-
oriented learning.

While these achievements advance our understanding of
goal-oriented behavior in complex tasks, our research also
uncovers areas requiring further exploration. One of these
is the quality of the trajectory dataset, a factor that can sig-
nificantly impact the performance of behavior cloning mod-
els. The existing dataset, albeit diverse due to the random
trajectories, may lack the precise control required to cre-
ate realistic artwork. Consequently, models trained on this
data struggle to master the fine-grained manipulations nec-
essary for creating intricate patterns. Future research could
address this by focusing on creating expert trajectories that
prioritize artistic patterns, thereby enabling more effective
learning from high-quality demonstrations.

Moreover, there is an opportunity to refine the GCBC
models to improve long-horizon predictions, which would
enhance their ability to perform more complex tasks. Poten-
tial improvements could involve architectural modifications,
such as adjusting the number of hidden units or layers, or
altering activation functions. Another intriguing direction
could involve designing models that operate directly in the
latent space provided by the VAE. Such models could poten-
tially yield more accurate long-horizon predictions, offering
a promising area for future research.

1. Introduction
1.1. The Difficulty of Fluid Manipulation

Developing intuitive physical models for robotic fluid
manipulation presents an intricate challenge due to the in-
herent complexity of fluid systems. These systems, char-
acterized by hundreds of thousands of interacting particles,
exhibit emergent properties such as fluid viscosity, which
are difficult to interpret from a snapshot image. The tran-
sition from simulated to real-world learning (sim2real) in-
troduces additional complexities, as fluids are more suscep-
tible to natural world disturbances than solid objects. To
address these issues, we need a robust learning model ca-
pable of 1) compactly representing numerous fluid parti-
cles, 2) accurately depicting complex multi-fluid dynamics,
and 3) demonstrating adaptability to real-world variability.
The necessity of overcoming these obstacles is underscored
by the broad potential benefits, from increasing efficiency
in industries like manufacturing to enhancing precision in
medical procedures, thereby driving significant scientific
and industrial advancements.

1.2. FluidLab and the LatteArt-v0 Task

To provide realistic multi-fluid systems to simulate com-
plex fluid manipulation environments, Xian et al. released
FluidLab [7]. Although FluidLab possesses a myriad of
practical, yet interesting manipulation tasks, one in particu-
lar is chosen to be the environment of choice for this project:
the latte-art making task, identified as the LatteArt-v0
environment. The environment setting is as follows (visuals
are provided in Figure 1): the scene is initialized with a cof-
fee mug that is already filled with brown fluid representing
coffee. Then, a white injector is positioned directly, albeit
randomly, above the coffee mug. Wherever the injector is, it
drops white particles representing foam directly below and
onto the latte. The foam then mixes with the cofee particles,
upon which the underlying fluid engine of FluidLab kicks in
and simulates any interactions and emergent behavior of the
coffee and the foam.

The task setting is as follows: at the beginning of each
episode, a desired configuration of the foam particles on the
coffee is given to the environment. We can think of this as
the desired artwork that we wish our agent to draw out using
the foam injector. Then, within the horizon H of the episode
the agent is tasked to move the foam injector such that by
the episode’s termination, the configuration of the injected
foam particles and the coffee particles match closely to the
input desired configuration. In other words, the agent has
made the desired latte art.

1.3. Goal-Conditioned Behavior Cloning (GCBC)

Goal-conditioned learning methodologies in deep rein-
forcement learning (DRL) open up promising possibilities

(a) t = 300

(bt =315

()t =330

Figure 1: A pre-programmed optimal trajectory from Flu-
idLab that produces a clef. We see the foam injector moved
around across time to delicately draw out the artwork.

to address the intricate problems identified in fluid manipu-
lation tasks. These methodologies condition an agent’s pol-
icy on the present state of the environment as well as a spec-
ified goal state. This alignment with our LatteArt-v0
task, which sets a unique target configuration of foam par-
ticles for each episode, empowers the model to adapt its
policy dynamically in response to the changing objectives
in every episode.

An insightful extension to goal-conditioned learning
is proposed by Ding et al. in their work titled ”Goal-
conditioned Imitation Learning” [1]. They demonstrate that
the integration of expert demonstrations into reinforcement
learning can expedite the learning process and improve pol-
icy efficiency, especially in contexts with complex state
spaces. These demonstrations act as a valuable guiding sig-
nal, steering the agent towards effective behaviors, thus ef-
fectively initializing the agent with a reasonably good pol-
icy. This mitigates the steep learning curve often observed
in DRL, particularly beneficial in our fluid manipulation
task, which is marked by inherent complexity. The method
outlined by Ding et al. also shows efficacy even when ex-
pert demonstrations lack action sequences, leveraging third
person or kinesthetic demonstrations.

1.4. Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [3] have emerged as
powerful generative models that can capture complex data
distributions and learn latent representations of input data.
In the context of computer vision, VAEs have been success-
fully applied to tasks such as image generation, data syn-
thesis, and anomaly detection. VAEs consist of two main
components: an encoder network and a decoder network.
The encoder network takes an input data point and maps
it to a latent space representation, typically modeled as a
multivariate Gaussian distribution. This latent space repre-
sentation is then used by the decoder network to reconstruct
the original input data. The encoder and decoder networks
are jointly trained using a combination of a reconstruction
loss, which encourages the decoder to generate outputs that
resemble the input data, and a regularization term, often

based on the Kullback-Leibler (KL) divergence, which en-
courages the latent space distribution to approximate a pre-
defined prior distribution, typically a standard Gaussian.

We believe that a VAE can augmenet our goal-
conditioned behavior cloning model and tackle the issues
outlined in Section 1.1. Although there are thousands of
particles (115,480 in the LatteArt—-v0 environment) in
the scene, it is not necessary to distinguish each and ev-
ery particle. This is because multi-fluid emergent behav-
iors are a consequence of indeed thousands of particles, not
just a couple. In this task, the responsibility of the encoder
component of a VAE would aim to compactly represent the
scene in a latent space. This latent space may pick up on the
most salient features of the scene, which may include intu-
itive observations such as the presence of the gray coffee
mug, the position of the foam injector, and distinct clusters
of particles.

2. Related Work

Solid object manipulation has been a core focus of robot
learning, leading to advances such as the works of Zhu et
al. [8] on dexterous manipulation and Mahler et al.’s Dex-
Net project [4]. However, due to the intricate nature of fluid
interactions, direct application of these methods to fluid sys-
tems has proven challenging. Recent work by Finn et al. [2]
on deep spatial autoencoders showcase the power of learn-
ing compact representations for control tasks. These works
provide the basis for our approach, which focuses on utiliz-
ing Variational Autoencoders (VAEs) [3] for learning fluid
dynamics. To the best of our knowledge, this represents a
novel exploration of using VAEs in the context of fluid ma-
nipulation tasks.

In terms of learning dynamics models for control, the
work of Watter et al. [6] on Embed to Control (E2C) pre-
sented a similar approach of learning a latent representa-
tion and a dynamics model simultaneously. Our work di-
verges in the complexity of the system being modeled — a
fluid system versus solid object manipulation. Perhaps most
similar is the work of Xian et al. on their development of
FluidLab. Despite the shared environment, their focus did
not extend to the specific LatteArt—v0 task nor the in-
tegration of VAESs to learn fluid representations. Thus, our
work uniquely combines the idea of learning latent repre-
sentations using VAEs with a learned dynamics model for
controlling a robotic manipulator in fluid environments. In
doing so, we add to the growing body of knowledge on data-
driven approaches for complex physical system manipula-
tion, specifically in multi-fluid systems.

3. Data

To the best of our knowledge, there does not exist
any dataset of episode trajectories for any of the tasks

3 X 256 x 256 3 x 256 x 256

—0.50
0.25
0.60

(b) at,q

(a) o¢,i (©) 0t,it1

Figure 2: An example entry in D.

present in FluidLab. The process of constructing this
dataset from scratch, primarily from random trajectories
in the LatteArt—-v0 environment, formed a substantial
part of this project’s groundwork. Formally, we have ini-
tially generated a dataset D of N = 2500 trajectories
where each trajectory ¢ is a collection of H = 330 tuples
(0t,i, Gt,5,014+1) as visualized in Figure 2. Here, o, ; has
dimension (3 x 960 x 960) and represents the RGB obser-
vation of the scene at the 7th timestep in trajectory ¢. a; ; has
dimension (3) and represents control values inputted to the
foam injector at the ith timestep in trajectory ¢ to produce
ot,i+1. We choose to generating random trajectories so our
models can be trained on a significantly encompassing dis-
tribution of scene observations. Intuitively, if N and H are
sufficiently high, then the random injector actions should
generate a diverse distribution of particle states, which al-
low our autoencoder to learn a robust representation of the
scene. For clarity, we can partition D into D,, and D,, where
D, only contains image observations and likewise D, only
contains actions.

In total, our dataset D, contains 330 x 2500 = 825000
image observations of dimension 3 x 960 x 960. This pre-
sented a significant strain on the storage resources provided
by the computing environment hosting this project, which
called for the following preprocessing of the data. First,
image observations were down-sampled to be of dimension
3 x 256 x 256. Next, for the sake of easier model learning
the pixel values of all the images were normalized to be in
the range [0, 1]. Finally, to fit as many trajectories in our
computing environment’s disk space as possible, the preci-
sion of the image observations were reduced from being 64
bit precision to instead being 32 bit precision.

4. Methods
4.1. Leveraging GCBC

Our approach is motivated by the success of Ding et
al’s methodology, extending these principles to a goal-
conditioned setting for fluid manipulation tasks. Traditional
imitation learning techniques focus on replicating expert
actions without explicitly considering the changing goal

states, limiting their ability to generalize beyond the demon-
strations. Our approach aims to overcome these limita-
tions by conditioning on both current and goal states, which
equips the agent to construct meaningful representations of
fluid particles and their dynamic interactions.

We posit that our goal-conditioned imitation learning ap-
proach can capture the three capabilities highlighted earlier:
compact representation of fluid particles, accurate depiction
of complex multi-fluid dynamics, and adaptability to real-
world variability. Furthermore, our agent, trained from a
diverse range of expert demonstrations, is expected to be ro-
bust against real-world variability, as these demonstrations
provide a rich array of scenarios potentially encountered in
actual deployment.

4.2. Trajectory Generation

Section 3 discusses the contents of D, any required sani-
tization steps, and a overview of the generation mechanism
yielding D. In this section we detail and formalize the tra-
jectory generation process.

To begin, we construct an exploration policy Texp(+|0¢,;)
that will serve as the main mechanism for choosing a; ;
given o ;. Since for this project we have decided to create
random trajectories, we thus leverage a random Gaussian
policy TGauss(+) invariant to o, ;. Concretely, at timestep 4
for trajectory ¢, we sample a; ~ N'(u,Y) where p € R3
is a vector of zeros and ¥ € R3*3 is an identity covariance
matrix. Although p and ¥ are technically hyperparameters,
we affix them with the above traditional values for all ex-
periments conducted with D,,.

Although 7gayss 1s effective for rapidly generating tra-
jectories encompassing a wide distribution of particle ar-
rangements, the resulting D is not realistic for many de-
sired artworks. Figure 3 visualizes a sequence of image ob-
servations induced by actions sampled from mgauss. What
we observe is that the motion of the foam injector is jittery,
and there’s no correlation between where the injector was
at timestep ¢ and where it was at timestep ¢ + 1. Since the
performance of behavior cloning is significantly dependent
on the dataset it is learning from, and since desired artworks
generally have tightly correlated action sequences (e.g. Fig-
ure 1), it is in our best interest to augment mgauss With cor-
relatedness. Thus, we yield 7oy, a correlated noise policy
described by Nagabandi et al. [5].

Tcorr Operates by maintaining an exponential moving av-
erage of a; ; where each term to be averaged is noise sam-
pled from a Gaussian having zero mean and unit covariance.
In other words:

Nt ~ N(O,Ig)
ar; =B ari—1+ (1 —0) ng,

(a) t=30

(b)t=40 (c)t=50

Figure 3: Sample trajectory from a rollout of 7gyyss. Ac-
tions are taken independent of the previous ones, resulting
in purely noisy arrangements of fluid particles.

(a)t=30

(b) t = 40 (©t=50
Figure 4: Sample trajectory from a rollout of 7o, under
B = 0.95. Actions are related to the previous ones via an
exponentially moving average. This manifests in the agent
“following” a path, and producing a low intra-trajectory ac-
tion variance.

We can think of 5 € [0, 1] as the correlation coefficient,
a hyperparameter that controls how tightly correlated we
want our action sequences to be for a trajectory in D,. A
setting of 8 = 1 qualitatively holds the foam injector still
since every action is just the initial action, and a setting of
B = 0 recovers Tgauss- Figure 4 visualizes another sequence
of image observations where this time the underlying ac-
tions are sampled from 7co,. We observe that the actions
are quite correlated across time, and thus with this mce as
Texp W€ carry on with creating D as described in Section 3.

4.3. GCBC Model Behavior

There are two key components of the GCBC architec-
ture: the Conv layers and the MLP layers. The architec-
ture is visualized in 5. Adhering to the principles of goal-
conditioned reinforcement learning, the model is first fed
the current observation o, ; as well as some goal observation
gt,i- Since D, contains observations of random arrange-
ments of fluid particles, it is not immediately what the goal
observation is. For this project, we choose another image
observation o, ; (j > %) in the trajectory to be the goal ob-
servation. We pretend that this observation in our trajectory
is the goal we have been trying to reach all along. The intu-
ition is that if our GCBC model can learn the actions needed

to take the scene from having one arbitrary arrangement of
fluid particles to another somewhat arbitrary arrangement of
particles, then we cover a vast distribution of “goals”. When
an image corresponding to a desired artwork is fed into the
model as an actual goal, we can hope that aspects of that
goal has been seen during the behavior cloning process and
so the model can pull from that knowledge to take actions.

The output of the GCBC model is a vector of indepen-
dent means and standard deviations which parameterize a
Gaussian for each action component. The model is trained
to find such parameters that maximize the likelihood of
the expert actions. During a policy rollout, the model will
choose an action whose components are sampled from these
independent Gaussians.

4.3.1 Conv Layers

Once the model is given the current observation and the
goal, it then concatenates the two images along the channel
dimension, producing an input of dimension 6 x 256 x 256.
This input is then processed by the Conv layers, which per-
form a series of 2D convolutions on the image with vary-
ing kernel sizes. As per good deep learning practice, each
convolution is followed by a batch normalization layer be-
fore being processed by a ReLU non-linearity. The last
convolution is not followed a ReLU activation. Once the
Conv layers are done, we yield an output having dimension
64 x 84 x 84.

4.3.2 MLP Layers

To transform this intermediate output into a vector of
means, we have it processed by the MLP layers. This is a
fairly standard stack of linear layers each followed by batch
normalization and ReLU non-linearity. Like with the Conv
layers, the last linear linear is not followed by a ReLU acti-
vation. Once the MLP layers are done, we finally have our
vector of means.

4.4. Incorporating Latent Representations

Leaving this GCBC model aside, which we notate as
GCBC, we also explore the influence of latent represen-
tations induced by a trained VAE on top of a learning
GCBC model. We call this model GCBC-VAE. As opposed
to GCBC, which works with the RGB observations of the
scene, GCBC—VAE first encodes the observation and goal
down into latent space according to the trained VAE, and the
behavior cloning network works with the compact represen-
tation to predict the next action to take. By deploying the
VAE in conjunction with this model, we can observe how
well the VAE enables the dynamics models to progress the
environment and achieve the desired goal. Ultimately, the
success of the task at hand, such as creating latte art in the
LatteArt-vO0 task, hinges on the ability of the VAE to

provide informative and meaningful latent representations.
Through these experiments, we will gain crucial insights
into the efficacy of the VAE and its role in solving the task
effectively. The architectural details of the VAE model is
out of scope for this report.

4.5. Evaluating the GCBC Models
4.5.1 Validation Rollouts

Once our behavior cloning networks are trained, we val-
idate the models on a collection of recorded trajectories
for which we calculate the mean-squared error (averaged
across the H timesteps and Ty, trajectories) between the
action vector predicted by our model, and the action vec-
tor actually taken under 7..p,. Since we need to be observ-
ing the same scene during validation as our exploration pol-
icy did during trajectory generation for a proper evaluation,
we need to have stored the low-level simulator state un-
derlying each o; ;. Thus, we have also constructed Dy,
a dataset of T, trajectories where each entry is a quadruple
(0t,i, Q1,01 iv1, St.;). Here sy ; refers to the low-level sim-
ulator state of the FluidLab simulation engine, which can
be retrieved by accessing the API of the environment. An-
other API call can be made that takes in s; ; and resets the
state of the simulation to match the state articulated by s; ;.
For the LatteArt-vO0 task, s;; holds state information
for 115, 480 particles and due to the storage limitations of
our computing environment, | Dy, | = 50.

4.5.2 Test Rollouts

Once the models are validated, we move on to rolling them
out as policies to hopefully solve the LatteArt-v0 task.
During the environment initialization, we store the inputted
desired artwork. When executing our GCBC policy, we
feed the current image observation and our stored goal ob-
servation. We take the action prescribed by the policy and
compile the image observations into a movie, which we
view once the rollouts are over.

4.6. Experiments
4.6.1 Ease of Cloning and Agent Myopia

For the first set of experiments, we are interested in analyz-
ing the difficulty of behavior cloning for different temporal
settings of the goal observation g; ; during training. We call
this placement of the goal observation g steps into future the
“myopia” of our GCBC agent. The relationship between g
and the goal observation is:

gt,i = Ot i+g
For example, if we want to train our GCBC models to
be trivially myopic g = 0 then we simply set g¢; = o¢.
If we want our agent to be conditioned on preparing for the

Concatenated Obs + Goal
(6x256x256)

l

Conv Layers (Conv2D -> BN -> ReLU)

A
\/

Conv Module #1 (32 5x5 Filters
Stride=1, Pad=1)

Conv Module #2 (64 3x3 Filters
Stride=3, Pad=0)

Conv Module #3 (64 3x3 Filters
Stride=1, Pad=0)

(88 ¢
SAVAN

Y
MLP Layers (Linear -> BN -> RelLU)

MLP Module #1 (64 * 84 * 84 -> 128)

Py
\&/

Y

MLP Module #2 (128 -> 128)

A
Y

Y

MLP Module #3 (128 -> 3)

\V

|

Action (3)

ana
\

Figure 5: GCBC architecture consisting of Conv and MLP
layers.

Ease of Cloning versus Agent Myopia

o e A I\ S e Ny

Log Likelihood

Training Steps

2k 4k 6k

Figure 6: The difficulty of behavior cloning for various set-
tings of g. We quantitatively observe the model having a
greater ease of cloning when the model is conditioned on
next-step goals. For further goals, it is not conclusive but it
appears it is equally difficult.

next-step observation (g = 1), we set g;; = ot,% + 1. So,
in this fashion g becomes a hyperparameter of our model.
“Ease of cloning* in this context refers to the likelihood the
GCBC models can achieve when fitting their predicted dis-
tributions to the actions taken by 7.y,. Figure 6 showcases
this difficulty for various settings of g across training time.
These experiments were done under a setting of 5 = 0.15
so that it is sufficiently challenging for the model to adapt to
the dataset (see Section 4.6.2). We notice that for an agent
predicting only considering the next image observation, the
model seems to achieve greater likelihood. For further set-
tings of the goal, we see a decrease in the likelihood, al-
though the differences are not significant between the far-
away settings.

4.6.2 Ease of Cloning and [Setting

[The other hyperparameter of interest in this project is the
correlation coefficient 5. As a natural step, we investigate
the influence of intra-trajectory variance in the actions taken
on the ease of cloning. Figure 7 showcases this influence for
two extreme values of 8: 8 = 0.05 and 8 = 0.95. Here,
we observe a significant difference in ease of cloning by our
model between the two settings. When the variance of the
actions taken are low (5 = 0.95), our GCBC models have a
significantly easier time fitting the Gaussian distributions to
the dataset. When the actions are highly de-correlated, our
model achieves a smaller likelihood.

4.6.3 GCBC and GCBC-VAE Performance

The main experiment that we have run is evaluating the tra-
jectories produced by our various models for a test desired
artwork, compared to a baseline random policy. The art-
work of interest is a checkmark centered at the left half of
the coffee, and is designed to be produced in approximately

Ease of Cloning versus Dataset Variance

Log Likelihood

. WWW — g =1 (beta = 0.95)

— g =1 (beta = 0.05)

Training Steps

2k 4k 6k

Figure 7: The difficulty of behavior cloning for two extreme
settings of 5. When the dataset consists of highly-correlated
actions, we observe that our behavior cloning network has
an easier time adapting to the dataset (as indicated by the
relatively large likelihood values). When the dataset con-
sists of loosely correlated actions, our network has more
difficult fitting to the greater variance in the trajectory.

50 timesteps. Figure 8 visualizes the performance of all the
agents, where all agents learned from a dataset created un-
der a setting of 5 = 0.95. We critically note that none of
the agents successfully solve the LatteArt-v0 task and
draw out the desired artwork. With that being said, there
are a few observations we can make about the trajectories
that these agents have made. For example, we observe that
for all the agents employing a behavior cloning network,
the agent appropriately follows the stroke direction implied
by the checkmark artwork. All GCBC models start their
foam injector at a reasonable, perhaps signaled by the loca-
tion of the injector in the goal observation image. We no-
tice that there is little difference in the trajectory produced
between the myopic (¢ = 1) agent and the agent trained
to predict considering what may happen 50 timesteps later.
We do observe a difference between the VAE-incorporated
GCBC-VAE agent and the non-VAE GCBC agent. Specifi-
cally, we notice that the robot shows a behavior of localiz-
ing the artwork within the coffee. This is deduced from the
the placement of much of the foam particles clustering on
the left half of the coffee, where the desired artwork is also
concentrated in the goal observation image.

4.7. Analysis and Discussion
4.7.1 Quality of Trajectory Dataset

To reiterate, the performance of any behavior cloning model
hinges on the quality of the dataset being used to train the
model. Our experiments in Sections 4.6.1 and 4.6.2 illus-
trate this fact in terms of training difficulty, but this could
also underscore the poor trajectories produced by these
models during test time. We suspect that the intuition that
has encouraged us to produce a dataset of random trajec-
tories, although does cover a vast distribution of fluid ar-

(a) Goal Artwork (b) Random Policy

(d) GCBC-VAE (g =
(c) GCBC 1)

(e) GCBC-VAE (g =
50)

Figure 8: Resulting “checkmark™ produced after 50 steps
according to various control policies. The arrangement in
(a) represents a checkmark and is fed as input into 3 poli-
cies: that of GCBC-VAE, that of GCBC, and a random pol-
icy. The random policy in (b) disregards the goal and pro-
duces a jittery trajectory that results in a random arrange-
ment of particles. GCBC in (c) figures out a reasonable start-
ing location for the foam injector, but escapes the region it
should keep the foam injector. GCBC—-VAE extends GCBC
and somewhat localizes the foam particles to match the in-
put checkmark location. GCBC-VAE in (d) and (e) show
that training under long-horizon prediction manifests in lit-
tle to no difference in the trajectories produced.

rangements, falls short of emphasizing the subset of fine-
grained trajectories that would produce the kind of arrange-
ments that would be typically considered “artwork”. Thus
one possible direction for future work is to compile trajec-
tories involved in producing realistic, artwork. We hypoth-
esize that this would bolster the performance of our GCBC

models since they would be learning from effectively expert
trajectories.

4.7.2 GCBC Models and Realistic Representations

Our experiment with GCBC-VAE show that there is much
room for improvement when it comes to deploying our VAE
on a model to perform control. Although our VAE does aid
in producing a more localized trajectory, it is nevertheless
trained on a dataset of random trajectories. Thus, the ad-
vantages provided by a VAE are dampened by learning from
these random trajectories that do not exhibit salient features.
The performance of our GCBC-VAE model is then bottle-
necked by both the quality of the trajectory dataset and the
quality of the latent representations induced by the VAE,
which itself is trained from the trajectory dataset. If it is
not possible to obtain a more realistic trajectory dataset, an-
other next step involves simply experimenting with the ar-
chitecture of the GCBC models, modifying things such as
the number of hidden units, layers, and activations used. It
may be worthwhile to investigate using dynamics models
that operate directly in latent space, as that might allow for
more accurate long-horizon predictions (settings where g is
sufficiently large). It would be an interesting investigation
to compare the trajectories produced by such a model with
the goal-conditioned behavior cloning networks that work
with raw image data.

4.8. Conclusion

In this research, we propose a goal-conditioned deep re-
inforcement learning approach for fluid manipulation tasks.
We contribute a new trajectory dataset whose generation
combines random and correlated noise policies to produce
diverse arrangements of fluid particles. Our GCBC mod-
els, utilizing convolutional and multi-layer perceptron lay-
ers, predicts actions based on expert demonstrations. Ad-
ditionally, we explore the incorporation of a VAE within
the GCBC framework. The GCBC-VAE model, operating
in a compact latent space, exhibits improved localization of
foam particles, indicating the potential of incorporating la-
tent representations for enhancing performance. However,
our findings also shed light on the challenges and limita-
tions of our approach. We identify the quality of the trajec-
tory dataset as a critical factor affecting model performance,
emphasizing the need to gather trajectories specifically fo-
cused on realistic artwork. Furthermore, we suggest further
investigation into architectural modifications and dynamics
models operating directly in latent space to improve long-
horizon predictions.

4.9. Acknowledgements

This project could not have been made possible with-
out the high-level discussions I have had with Stephen Tian

(stian) about interesting experiments to run. I greatly ap-
preciate the Stanford Vision and Learning Lab for providing
a computing environment to run the experiments.

References

[1] Y. Ding, C. Florensa, M. Phielipp, and P. Abbeel. Goal-
conditioned imitation learning, 2020. 2

[2] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and
P. Abbeel. Deep spatial autoencoders for visuomotor learn-
ing, 2016. 3

[3] D. P. Kingma and M. Welling. Auto-encoding variational
bayes, 2022. 2, 3

[4] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. A. Ojea, and K. Goldberg. Dex-net 2.0: Deep learning
to plan robust grasps with synthetic point clouds and analytic
grasp metrics, 2017. 3

[5] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar. Deep
dynamics models for learning dexterous manipulation, 2019.
4

[6] M. Watter, J. T. Springenberg, J. Boedecker, and M. Ried-
miller. Embed to control: A locally linear latent dynamics
model for control from raw images, 2015. 3

[7]1 Z. Xian, B. Zhu, Z. Xu, H.-Y. Tung, A. Torralba, K. Fragki-
adaki, and C. Gan. Fluidlab: A differentiable environment for
benchmarking complex fluid manipulation. In International
Conference on Learning Representations, 2023. 2

[8] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Ku-
mar. Dexterous manipulation with deep reinforcement learn-
ing: Efficient, general, and low-cost, 2018. 3

