
Learned Latent Representations for Robotic Fluid Manipulation

Michael Nath
Stanford University

Department of Computer Science
mnath@stanford.edu

Stephen Tian (Non-CS231N Contributor)
Stanford University

Department of Computer Science
stian@stanford.edu

Abstract

Many of the objects we interact with in the world are flu-
ids — water, milk, air, etc. The world of robot learning has
seen significant advances in fine-grained control of discrete
solids, but it remains a challenge to endow robots with an
intuitive understanding of fluid manipulation. As a novel
attempt to impart robots with a learned physics model of a
complex, multi-fluid system, this study aims to learn good
intermediate representations of fluids off RGB observations
of the particular fluid task.

For this project, we investigate training a Variational
Autoencoders (VAEs) from scratch for a fluid manipulation
task, specifically the LatteArt-v0 latte-art making task.
The VAE is trained to learn compact latent representations
of fluid scenes and is evaluated in terms of reconstruction
quality and its integration with a goal-conditioned behav-
ior cloning model (GCBC-VAE).

We analyze reconstructions provided by the VAE com-
pared to a baseline mean image of our custom trajectory
dataset. We show that the reconstructions are practically
indistinguishable from the mean image, indicating that the
VAE has learned the invariant properties of each image but
not much more. We exponentially back-off the influence
of the KL-divergence loss term, and show the reconstruc-
tions gradually deviate from the mean image, demonstrat-
ing the impact of latent regularization on the reconstruction
similarity. Additionally, varying the latent dimensionality
(dim(z)) shows negligible differences in reconstruction er-
ror, but higher dimensions allow for more nuanced recon-
structions and deviations from the mean image.

Using the VAE in the GCBC-VAE model shows promise
in localizing latte artwork. However, generating realistic
and intricate designs remains challenging due to our tra-
jectory generation scheme. We highlight a tradeoff between
compiling unrealistic trajectories covering a wide distri-
bution of fluid arrangements and focusing on realistic but
cumbersome trajectories as a next-step investigation to be
conducted.

1. Introduction

1.1. The Difficulty of Fluid Manipulation

Developing intuitive physical models for robotic fluid
manipulation presents an intricate challenge due to the in-
herent complexity of fluid systems. These systems, char-
acterized by hundreds of thousands of interacting particles,
exhibit emergent properties such as fluid viscosity, which
are difficult to interpret from a snapshot image. The tran-
sition from simulated to real-world learning (sim2real) in-
troduces additional complexities, as fluids are more suscep-
tible to natural world disturbances than solid objects. To
address these issues, we need a robust learning model ca-
pable of 1) compactly representing numerous fluid parti-
cles, 2) accurately depicting complex multi-fluid dynamics,
and 3) demonstrating adaptability to real-world variability.
The necessity of overcoming these obstacles is underscored
by the broad potential benefits, from increasing efficiency
in industries like manufacturing to enhancing precision in
medical procedures, thereby driving significant scientific
and industrial advancements.

1.2. FluidLab and the LatteArt-v0 Task

To provide realistic multi-fluid systems to simulate com-
plex fluid manipulation environments, Xian et al. released
FluidLab [5]. Although FluidLab possesses a myriad of
practical, yet interesting manipulation tasks, one in particu-
lar is chosen to be the environment of choice for this project:
the latte-art making task, identified as the LatteArt-v0
environment. The environment setting is as follows (visuals
are provided in Figure 1): the scene is initialized with a cof-
fee mug that is already filled with brown fluid representing
coffee. Then, a white injector is positioned directly, albeit
randomly, above the coffee mug. Wherever the injector is, it
drops white particles representing foam directly below and
onto the latte. The foam then mixes with the cofee particles,
upon which the underlying fluid engine of FluidLab kicks in
and simulates any interactions and emergent behavior of the
coffee and the foam.

The task setting is as follows: at the beginning of each

1

(a) t = 300 (b) t = 315 (c) t = 330

Figure 1: A pre-programmed optimal trajectory from Flu-
idLab that produces a clef. We see the foam injector moved
around across time to delicately draw out the artwork.

episode, a desired configuration of the foam particles on the
coffee is given to the environment. We can think of this as
the desired artwork that we wish our agent to draw out using
the foam injector. Then, within the horizon H of the episode
the agent is tasked to move the foam injector such that by
the episode’s termination, the configuration of the injected
foam particles and the coffee particles match closely to the
input desired configuration. In other words, the agent has
made the desired latte art.

1.3. Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [2] have emerged as
powerful generative models that can capture complex data
distributions and learn latent representations of input data.
In the context of computer vision, VAEs have been success-
fully applied to tasks such as image generation, data syn-
thesis, and anomaly detection. VAEs consist of two main
components: an encoder network and a decoder network.
The encoder network takes an input data point and maps
it to a latent space representation, typically modeled as a
multivariate Gaussian distribution. This latent space repre-
sentation is then used by the decoder network to reconstruct
the original input data. The encoder and decoder networks
are jointly trained using a combination of a reconstruction
loss, which encourages the decoder to generate outputs that
resemble the input data, and a regularization term, often
based on the Kullback-Leibler (KL) divergence, which en-
courages the latent space distribution to approximate a pre-
defined prior distribution, typically a standard Gaussian.

2. Related Work
Solid object manipulation has been a core focus of robot

learning, leading to advances such as the works of Zhu et
al. [6] on dexterous manipulation and Mahler et al.’s Dex-
Net project [3]. However, due to the intricate nature of fluid
interactions, direct application of these methods to fluid sys-
tems has proven challenging. Recent work by Finn et al. [1]
on deep spatial autoencoders showcase the power of learn-
ing compact representations for control tasks. These works
provide the basis for our approach, which focuses on utiliz-

ing Variational Autoencoders (VAEs) [2] for learning fluid
dynamics. To the best of our knowledge, this represents a
novel exploration of using VAEs in the context of fluid ma-
nipulation tasks.

In terms of learning dynamics models for control, the
work of Watter et al. [4] on Embed to Control (E2C) pre-
sented a similar approach of learning a latent representa-
tion and a dynamics model simultaneously. Our work di-
verges in the complexity of the system being modeled — a
fluid system versus solid object manipulation. Perhaps most
similar is the work of Xian et al. on their development of
FluidLab. Despite the shared environment, their focus did
not extend to the specific LatteArt-v0 task nor the in-
tegration of VAEs to learn fluid representations. Thus, our
work uniquely combines the idea of learning latent repre-
sentations using VAEs with a learned dynamics model for
controlling a robotic manipulator in fluid environments. In
doing so, we add to the growing body of knowledge on data-
driven approaches for complex physical system manipula-
tion, specifically in multi-fluid systems.

3. Data
To the best of our knowledge, there does not exist any

dataset of episode trajectories for any of the tasks present
in FluidLab. The process of constructing this dataset
from scratch, primarily from random trajectories in the
LatteArt-v0 environment, formed a substantial part of
this project’s groundwork. Formally, we have initially gen-
erated a dataset D of N = 2500 trajectories where each tra-
jectory t is a collection of H = 330 tuples (ot,i, at,i, ot,i+1)
as visualized in Figure 2. Here, ot,i has dimension (3 ×
960×960) and represents the RGB observation of the scene
at the ith timestep in trajectory t. at,i has dimension (3) and
represents control values inputted to the foam injector at the
ith timestep in trajectory t to produce ot,i+1. We choose to
generating random trajectories so our VAE can be trained on
a significantly encompassing distribution of scene observa-
tions. Intuitively, if N and H are sufficiently high, then the
random injector actions should generate a diverse distribu-
tion of particle states, which allow our autoencoder to learn
a robust representation of the scene. Since training a VAE
does not require knowledge of the action control values, we
can partition D into Do and Da and focus only on Do, where
Do only contains image observations and likewise Da only
contains actions.

In total, our dataset Do contains 330 × 2500 = 825000
image observations of dimension 3× 960× 960. This pre-
sented a significant strain on the storage resources provided
by the computing environment hosting this project, which
called for the following preprocessing of the data. First,
image observations were down-sampled to be of dimension
3× 256× 256. Next, for the sake of easier model learning
the pixel values of all the images were normalized to be in



3× 256× 256

(a) ot,i ,

−0.50
0.25
0.60


(b) at,i ,

3× 256× 256

(c) ot,i+1


Figure 2: An example entry in D.

the range [0, 1]. Finally, to fit as many trajectories in our
computing environment’s disk space as possible, the preci-
sion of the image observations were reduced from being 64
bit precision to instead being 32 bit precision.

4. Methods
4.1. Leveraging a VAE

We believe that a VAE is a good model choice to tackle
the issues outlined in (1.1). Although there are thousands
of particles (115,480 in the LatteArt-v0 environment)
in the scene, it is not necessary to distinguish each and ev-
ery particle. This is because multi-fluid emergent behav-
iors are a consequence of indeed thousands of particles, not
just a couple. In this task, the responsibility of the encoder
component of a VAE would aim to compactly represent the
scene in a latent space. This latent space may pick up on the
most salient features of the scene, which may include intu-
itive observations such as the presence of the gray coffee
mug, the position of the foam injector, and distinct clusters
of particles.

4.2. VAE Architecture

Figure 3 details the VAE architecture used for this
project. There are 3 components of interest: the encoder
layers, the latent layers, and the decoder layers.

4.2.1 Encoder

First, a RGB observation o is inputted to the VAE, where
it is immediately processed by the encoder. The encoder
is a stack of four nearly identical modules, differing only
in the parameterization of the internal layers. A given en-
coder module first applies a convolutional layer on the in-
put, with the kernel size depending on where the module is
situated in the broader encoder. Smaller kernel sizes were
used for the earlier modules in order to capture local spatial
filters, and since the receptive field becomes larger as more
convolutions are applied, the kernels in the later modules
were given greater size to more effectively pick up on more
global features. The convolutional layer is followed by a

batch normalization layer, which is generally known to be
good practice for more stable optimization. Finally a ReLU
activation is included in all modules except the last one, so
as to provide non-linearity in the encoder.

4.2.2 Latent Layers

Once the encoder has processed the input o, we get some
encoded representation z of the scene. However, it is not
enough to send z to the decoder, because we are chiefly in-
terested in having the decoder be expressive and handle a
distribution of latent vectors related to the input o. There-
fore, the role of the latent layers is to map z to a mean vector
µ and covariance Σ that capture the latent distribution of z
given the input o. At this point, we may produce z̄ by sam-
pling directly from this multivariate Gaussian parameter-
ized by µ and Σ, which would indeed challenge the decoder
to handle a distribution of z. However, direct sampling is
difficult to optimize via backpropagation and so instead we
follow the reparameterization trick described by [2] where
first we sample some noise n ∼ N (0, 1I) and then scale it
up by Σ and add by µ to obtain an equivalent sample. This
finally produces z̄, a compact, perturbed representation of
the scene, that is then passed to the decoder.

4.2.3 Decoder

Immediately after z̄ is passed to the decoder, a linear layer
projects the latent vector out to a flattened representation of
some image. Then, this flattened representation is reshaped
to be 3×d×d image where d is a hyperparameter. Similar to
the encoder, the decoder is made up of a stack of “decoder”
modules. Each decoder module is made up of a tranposed
convolution (which upsamples the image), a batch normal-
ization layer, and a ReLU activation. We note that the num-
ber of decoder modules depends on the both the value of
d and the upsampled resolution induced by each transpose
convolution. For example, if d = 32 and we wish to have
our image upsampled twice from each tranpose convolution
to ultimately get back to our input image height/width of
256, then we can expect log2(256/32) = 3 decoder mod-
ules. Once these layers are applied, we get back a resulting
image ō which should be as similar (pixel-wise) to the o as
possible.

4.3. Evaluating the VAE

4.3.1 Training/Validation

The VAE is trained to learn the minimize the following loss:

argmin
θ

MSE(o, ō) +DKL(qθ(z|o)||p(z))

This is a loss comprised of a reconstruction error — a
mean squared error between o and ō — as well the KL di-
vergence error between the latent distribution q induced by

Figure 3: VAE architecture consisting of an encoder, latent
layers, and a decoder.

the VAE and the prior distribution p, which for this study is
a multivariate Gaussian.

4.3.2 Baselines

There are two baselines representation mechanisms that we
have decided to use for this project. One very naive base-
line is a representation created by deriving the mean im-
age of all observations ot,i. The intuition here is that the
mean image should almost perfectly capture invariant fea-
tures of all the observations, namely the coffee mug and the
white background. However, since the mean image would
be computed on a dataset of random trajectories, it would
fall short of conveying anything meaningful about the foam
particles interacting with the coffee particles. This is shown
in Figure 4b, where we observe a blanket of foam particles
in no peculiar arrangement. This baseline would help us de-
termine if the VAE can pick up on at least the same features
that the mean image picks up on.

The second baseline is an autoencoder similar to the
VAE, except it is trained to minimize an objective consist-
ing of only the reconstruction loss. In other words, it is not
regularized. This baseline could be used as part of an abla-
tion study to determine the importance of the Gaussian prior
regularization. On a quantitative level, we can observe the
difference in the mean squared error achieved by the VAE
and the non-variational baseline. On a qualitative level, we
can compare the reconstructions for a given image.

4.3.3 Deploying on Dynamics Models

A intermediate representation provided by an encoder such
as a VAE is best understood by deploying a dynamics that
operates in latent space — a latent dynamics model. For the
last set of evaluations, we incorporate our trained VAE on a
model that works towards solving the LatteArt-v0 task:
a goal-conditioned behavior cloning model GCBC-VAE.
The architectural details of this two model is out of scope
for this report, but a summary of the model’s behavior is as
follows:

GCBC-VAE takes as input the current observation ot,i
and some “goal” image observation (perhaps an image of
the desired artwork), and outputs the next action at,i. Ide-
ally, at,i should progress the dynamics of the environment
and result in a new observation ot,i+1 that is closer to that
goal observation. Internally, GCBC-VAE first encodes the
observation and goal down into latent space according to
the trained VAE, and the behavior cloning network works
with the compact representation to predict the next action
to take.

By deploying the VAE in conjunction with this model,
we can observe how well the VAE enables the dynamics
models to progress the environment and achieve the desired
goal. Ultimately, the success of the task at hand, such as
creating latte art in LatteArt-v0, hinges on the ability
of the VAE to provide informative and meaningful latent
representations. Through these experiments, we will gain
crucial insights into the efficacy of the VAE and its role in
solving the task effectively.

4.4. Experiments

4.4.1 VAE and Mean Image

For the first set of experiments, we are interested in analyz-
ing the reconstructions provided by our VAE, and compar-
ing it to the mean image of the trajectory dataset. For this
experiment, the VAE operates with latent vectors having di-
mension 32, d = 32, and the VAE is trained for 15 epochs
with 250 iterations each and a batch size of 64. Mean im-
ages are computed by taking batches of 64 images across
random timesteps and trajectories, and taking an average
across the batch dimension.

Putting the reconstructions side by side with the mean
image (Figure 4), we observe that the two are practically
indistinguishable from one another. This is reassuring in
that at least our VAE has learned the invariant properties
of each image (as described in Section 4.3.2), but so much
so that it has effectively learned to reconstruct to the mean
image.

(a) + KL-Term (b) Mean Images (c) - KL-Term

Figure 4: The various reconstructions provided by the two
autoencoders, compared to the mean image. Incorporating
a KL-divergence loss term regularizes the VAE towards the
mean of the dataset, encouraging it to reconstruct to the
mean image. No KL-term encourages the autoencoder to
discriminate each image sample.

(a) MSE Loss

(b) Weight =
1

(c) Weight =
0.01

(d) Weight =
0.001

(e) Weight =
0

Figure 5: Reconstructions of some o, produced with varying
latent regularization strengths. When the KL-divergence
loss term is kept intact, we recover the mean image of D.
As we decrease regularization , we deviate from the mean
image.

4.4.2 KL-Weighting and Reconstruction

Upon observing the reconstruction similarity between our
VAE and the mean image, we conducted an experiment to
exponentially back-off the influence of the KL-divergence
loss term for each run until we have a run that is our base-
line autoencoder trained to minimize just the reconstruction
error. Quantitatively, we observe that there is negligible dif-
ference between the reconstruction error incurred by each
setting of the KL-weighting (Figure 5a). Qualitatively, we
observe that reducing the influence of the KL-divergence
loss term has the effect of producing reconstructions that
look less and less similar to the mean image (Figure 5e).

(a) MSE Loss

(b) dim(z) = 8 (c) dim(z) = 16

(d) dim(z) = 32 (e) dim(z) = 64

(f) dim(z) =
8

(g) dim(z) =
16

(h) dim(z) =
32

(i) dim(z) =
64

Figure 6: Reconstructions produced with varying latent
dimensionality and KL-weighting. Figure (a) indicates
that the VAEs achieve practically the same reconstruction
penalty error. Figures (b) - (e) show reconstruction qual-
ity under a setting of no latent regularization, where it is
observed that increasing dim(z) produces more nuanced re-
constructions. Figures (f) - (i) show reconstruction quality
with regularization penalty, where it is observed that the re-
constructions are invariant of the latent dimensionality and
collapse to the mean image.

4.4.3 Latent Dimensionality and Reconstruction

The dimensionality of the latent vector z — dim(z) — can
be interpreted as controlling the expressivity of the latent

distribution for our image observations. A more expres-
sive latent distribution can better capture peculiar latte art
designs, but is less likely to generalize. Thus, we con-
ducted an experiment to analyze the difference in recon-
struction quality as we vary dim(z)). For this experiment,
KL-weighting is set to 1, d = 32, and all VAEs are trained
for the same duration as for the experiment conducted in
Section 4.4.1. Quantitatively, we observe that the differ-
ence in reconstruction error achieved by the each setting
of dim(z) is negligible. Furthermore, we observe a similar
negligible difference in the reconstruction quality. When
we re-run the experiments but have the latent regulariza-
tion removed (KL-weight = 0), we still yield negligible
differences in the reconstruction. However, the differences
in dim(z) manifest in the reconstruction quality. Specifi-
cally, we observe that as we increase the latent dimension-
ality, the latent distribution is able to express more nuanced
reconstructions and deviate from the mean image. This in-
cludes placing the foam injector somewhere, forming some-
what meaningful patterns, and having greater granularity of
the fluid particles in the scene.

4.4.4 GCBC-VAE Performance

For the last set of experiments, we have rolled out
GCBC-VAE, as well as a non-VAE GCBC baseline, to per-
form control for the LatteArt-v0 task. In this exper-
iment, the goal-conditioned behavior cloning network is
trained to predict keeping in mind what may happen g = 50
timesteps later. Thus during test time, we input a desired
artwork that could be produced in around 50 timesteps. As a
baseline for the goal conditioned behavior cloning approach
itself, we provide the performance of an agent following a
random policy. We then run both GCBC and GCBC-VAE
for 50 timesteps and qualitatively observe the resulting ar-
rangement of foam and milk particles, which is presented
in Figure 7. We discover that by adding in the latent rep-
resentation from the VAE, the robot shows a behavior of
localizing the artwork within the coffee.

4.5. Analysis and Discussion

4.5.1 VAE and Mean Image

The above experiments lead us to interpret the latent reg-
ularization induced by the KL-divergence loss term as a
mechanism to drive towards the mean image of the dataset.
Since the VAE is regularized towards a Gaussian, the la-
tent vector that we sample in the latent layers is likely to
be the mean vector of some Gaussian. This could be ad-
vantageous for datasets where there are distinct clusters of
related artwork (e.g. cosine and sine wave artworks are
grouped together), so that the mean describes one of the
clusters, and then any perturbations during sampling yield

(a) Goal Artwork (b) Random Policy

(c) GCBC (d) GCBC-VAE

Figure 7: Resulting “checkmark” produced after 50 steps
according to various control policies. The arrangement in
(a) represents a checkmark and is fed as input into 3 poli-
cies: that of GCBC-VAE, that of GCBC, and a random pol-
icy. The random policy in (b) disregards the goal and pro-
duces a jittery trajectory that results in a random arrange-
ment of particles. GCBC in (c) figures out a reasonable start-
ing location for the foam injector, but escapes the region it
should keep the foam injector. GCBC-VAE extends GCBC
and somewhat localizes the foam particles to match the in-
put checkmark location.

an artwork similar to what’s in that cluster. However, be-
cause our dataset Do is effectively a collection of random
arrangements of particles, it is unlikely that there are dis-
tinct clusters. Thus, z may just treat all of Do as just one
cluster and samples of z may tend towards the mean of Do.
One next step given this analysis is to take goal artworks
that can be generated via a formula, and collate them into a
new trajectory dataset. Since there would be distinct clus-
ters present, our sampled z may be more meaningful and
tend towards different means for different clusters depend-
ing on what the input o is.

4.5.2 dim(z) and Reconstruction Quality

In the absence of regularization, there appears to be a posi-
tive correlation between dim(z) and the expressiveness of
the reconstructions. If the kind of trajectory dataset de-
scribed at the end of Section 4.5.1 becomes available, then
it may be an interesting investigation to compare the recon-
struction quality for increasing dim(z) under a setting of

latent regularization. Figuring out a dimension for z that
is compact yet sufficiently expressive can lead to interest-
ing downstream applications of VAEs in models that per-
form dynamics entirely in latent space and which progress
towards solving the LatteArt-v0 task.

4.5.3 GCBC-VAE and Realistic Representations

Our experiments with GCBC-VAE show that there is much
room for improvement when it comes to deploying our VAE
on a model to perform control. Although our VAE does aid
in producing a more localized trajectory, it is nevertheless
trained on a dataset of random trajectories that are unlike the
fine-grained ones that would produce the intricate artwork
that is usually desired. The performance of GCBC-VAE
sheds some light on a tradeoff between compiling trajec-
tories that are unrealistic, but objectively cover a vast dis-
tribution of arrangements of fluid particles, and focusing on
realistic trajectories but are cumbersome to produce.

4.6. Conclusion

In this study, we explored the application of Variational
Autoencoders (VAEs) in fluid manipulation tasks, focusing
on the LatteArt-v0 task. The VAE was trained to learn
compact latent representations of fluid scenes and evaluated
in terms of reconstruction quality and its integration with
a goal-conditioned behavior cloning model (GCBC-VAE).
We found that the VAE tended to converge towards the
mean image of the dataset, indicating a need for more di-
verse feature capture. Varying the latent dimensionality and
regularization scheme had negligible impact on reconstruc-
tion error but influenced the expressiveness and granularity
of the reconstructions. The integration of the VAE within
the GCBC-VAE model showed promise in localizing art-
work within the coffee, but generating more realistic and
intricate designs remains a challenge. Future work could
focus on generating diverse and realistic training trajecto-
ries to improve the VAE’s performance. Overall, our study
demonstrates the potential of VAEs in learning representa-
tions of fluid scenes and their role in control models for
multi-fluid manipulation tasks.

4.7. Acknowledgements

This project could not have been made possible with-
out the high-level discussions I have had with Stephen Tian
(stian) about interesting experiments to run. I greatly ap-
preciate the Stanford Vision and Learning Lab for providing
a computing environment to run the experiments.

References
[1] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and

P. Abbeel. Deep spatial autoencoders for visuomotor learn-
ing, 2016. 2

[2] D. P. Kingma and M. Welling. Auto-encoding variational
bayes, 2022. 2, 3

[3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. A. Ojea, and K. Goldberg. Dex-net 2.0: Deep learning
to plan robust grasps with synthetic point clouds and analytic
grasp metrics, 2017. 2

[4] M. Watter, J. T. Springenberg, J. Boedecker, and M. Ried-
miller. Embed to control: A locally linear latent dynamics
model for control from raw images, 2015. 2

[5] Z. Xian, B. Zhu, Z. Xu, H.-Y. Tung, A. Torralba, K. Fragki-
adaki, and C. Gan. Fluidlab: A differentiable environment for
benchmarking complex fluid manipulation. In International
Conference on Learning Representations, 2023. 1

[6] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Ku-
mar. Dexterous manipulation with deep reinforcement learn-
ing: Efficient, general, and low-cost, 2018. 2

